機(jī)械社區(qū)

 找回密碼
 注冊會員

QQ登錄

只需一步,快速開始

搜索
查看: 9985|回復(fù): 4
打印 上一主題 下一主題

結(jié)構(gòu)的動力特性及穩(wěn)定性讀書筆記

[復(fù)制鏈接]
跳轉(zhuǎn)到指定樓層
1#
發(fā)表于 2016-5-13 20:13:55 | 只看該作者 回帖獎(jiǎng)勵(lì) |倒序?yàn)g覽 |閱讀模式
本帖最后由 幸會幸會 于 2016-5-13 20:13 編輯
( W, M4 B6 d6 a4 D. o4 e' b0 F4 o" c& q7 h+ l+ x
最近終于完整看完了一遍結(jié)構(gòu)力學(xué),回頭想想好像啥也沒學(xué)會,拍拍腦袋更迷糊了,干脆照著教材抄一遍做個(gè)總結(jié),權(quán)當(dāng)自己看過了,哈哈。后面計(jì)劃學(xué)些計(jì)算結(jié)構(gòu)力學(xué),然后集中精力啃彈性力學(xué)了,希望社區(qū)的大俠們能點(diǎn)撥一下,不勝感激!0 v0 J% p. x. o
下面附筆記全文(內(nèi)容摘自《結(jié)構(gòu)力學(xué)》下冊,朱慈勉主編)
* \3 W9 c! b& P. A4 \1 A
1 Q" c4 c$ v+ Q% M* r7 _' z" {( c2 ~

3 ~+ z; f% k  w; ?1 W" f
結(jié)構(gòu)動力學(xué)
  L3 l  k# S, u2 Q& C
結(jié)構(gòu)動力學(xué)是研究結(jié)構(gòu)在動力作用下的振動問題,當(dāng)結(jié)構(gòu)上作用有變化力而引起較明顯的結(jié)構(gòu)質(zhì)量加速度時(shí),其相應(yīng)的慣性力便不容忽視。結(jié)構(gòu)因動力作用而產(chǎn)生的位移和內(nèi)力稱為動位移和動內(nèi)力,動位移,動內(nèi)力和結(jié)構(gòu)的速度,加速度等統(tǒng)稱為結(jié)構(gòu)的動力響應(yīng)。機(jī)構(gòu)的動力響應(yīng)除與外部作用相關(guān)外,還與結(jié)構(gòu)本身的動力特性密切相關(guān),包括自振頻率,振型和阻尼。
實(shí)際結(jié)構(gòu)都是由變形體組成的,而且質(zhì)量是連續(xù)分布的,是屬于無限自由度的振動體系,若將所有動力計(jì)算問題都按無限自由度考慮,則不僅計(jì)算復(fù)雜,有時(shí)甚至是不可能的。將無限自由度振動問題近似轉(zhuǎn)換為有限自由度的方法有集中質(zhì)量法和廣義坐標(biāo)法。
所謂集中質(zhì)量法,是將連續(xù)分布的質(zhì)量集中到結(jié)構(gòu)的某個(gè)或某些位置上,使其余位置不再存在質(zhì)量的近似方法(一般忽略集中質(zhì)量的轉(zhuǎn)動慣量的影響)。所謂廣義坐標(biāo)法,是通過對質(zhì)體運(yùn)動的位移形態(tài)從數(shù)學(xué)的角度施加一定的內(nèi)在約束,這種約束的數(shù)學(xué)表達(dá)式稱為位移函數(shù)。
(一)           單自由度體系運(yùn)動
方法有動靜法(達(dá)朗貝爾原理)和哈密頓原理(通過對表示能量關(guān)系泛函的變分建立體系的運(yùn)動方程?)
方程的建立,可通過柔度法,剛度法和虛功法,得到一個(gè)二階常系數(shù)線性微分方程,my’’+cy’+ky=Fp(t) (這個(gè)方程貌似很重要,RLC電路也是這個(gè))。列方程時(shí)需注意兩點(diǎn):
1,動力平衡中涉及的所有里均是作用在質(zhì)量上,并且是沿質(zhì)量運(yùn)動自由度的方向;
2,質(zhì)量的位移y是由靜平衡位置起算的動位移。
單自由度體系無阻尼振動時(shí)的圓頻率稱為自振頻率,ω=sqrt(k/m),這個(gè)頻率很重要,取決于體系本身的剛度和質(zhì)量,我們常說的‘共振’就是因?yàn)閺?qiáng)迫振動頻率太接近自振頻率造成的。再一個(gè)就是自振周期。
有阻尼時(shí),引入了一個(gè)概念阻尼比ξ=c/(2*m*ω),根據(jù)阻尼比的值將有阻尼的單自由度體系分成三種情況:低阻尼<1,臨界阻尼=1,過阻尼>1。一般建筑結(jié)構(gòu)阻尼比很小,約在0.01-0.1之間。阻尼的存在將使結(jié)構(gòu)受到的干擾逐漸消退,阻尼比的大小決定了系統(tǒng)干擾消減的方式,對二階微分方程來說,它進(jìn)入到e的指數(shù)上,帶著初始狀態(tài)走向消亡。
體系在動力作用下產(chǎn)生的運(yùn)動稱為強(qiáng)迫振動,也稱為受迫振動。
無阻尼的強(qiáng)迫振動,
一、 簡諧荷載
運(yùn)動方程全解分成三部分,前兩項(xiàng)由位移,速度初始條件引起的,第三項(xiàng)與初始條件無關(guān),是伴隨激振力的作用而產(chǎn)生的,稱為伴生自由振動,第四項(xiàng)則是由激振力引起的并與其頻率相同的振動,稱為純強(qiáng)迫振動。當(dāng)有阻尼存在時(shí),前三項(xiàng)所代表的自由振動都將迅速衰減(方程的瞬態(tài)解),第四項(xiàng)由于他的振幅和頻率都是穩(wěn)定的,因而稱為穩(wěn)態(tài)強(qiáng)迫振動。
動位移幅值與靜位移幅值之比,稱為動力系數(shù),它反映了慣性力的影響。
θ,強(qiáng)迫振動頻率,ω,自振頻率
簡諧荷載作用下無阻尼穩(wěn)態(tài)振動的主要特點(diǎn):
1,穩(wěn)態(tài)強(qiáng)迫振動的頻率和荷載的變化頻率相同,動位移,慣性力以及體系的動內(nèi)力均與干擾力同時(shí)達(dá)到幅值。θ<ω時(shí),動力系數(shù)>0,動位移和干擾力方向相同;θ>ω時(shí),動力系數(shù)<0,動位移和干擾力方向相反。
2,θ<<ω,動力系數(shù)趨近于1,這種情況相當(dāng)于靜力作用,通常(θ/ω)<1/5時(shí),即可按靜力方法計(jì)算幅值;θ>>ω,動力系數(shù)趨近于0,表明當(dāng)干擾力頻率遠(yuǎn)大于自振頻率時(shí),動位移將趨向于零;θ趨向于ω時(shí),振幅趨于無窮大。實(shí)際結(jié)構(gòu)由于阻尼的存在,振幅不可能趨于無窮大,但它仍將遠(yuǎn)大于靜位移的值,這種現(xiàn)象稱為共振。一般應(yīng)控制θ/ω的值避開(0.75,1.25)的共振區(qū)段。
3,在(θ/ω)<1的共振前區(qū),為使振幅減小可設(shè)法增大結(jié)構(gòu)的自振頻率,這種方法稱為剛性方案;在(θ/ω)>1的共振后區(qū),則應(yīng)設(shè)法減小結(jié)構(gòu)的自振頻率以減小振幅,這種方案稱為柔性方案。
共振現(xiàn)象的形成有一個(gè)能量積聚過程,所引起的振幅是由小逐漸變大的。因此,在電動機(jī)起動轉(zhuǎn)速驟增迅速通過共振區(qū)時(shí),一般不會引起結(jié)構(gòu)過大的內(nèi)力和變形。
對一般周期荷載,總可以按傅立葉級數(shù)進(jìn)行展開成簡諧荷載,然后疊加各荷載響應(yīng)之和即可得體系的動力響應(yīng)。
二、 一般動力荷載
由于運(yùn)動微分方程是線性的,可運(yùn)用疊加原理,任意變化的動力荷載,可視作一系列獨(dú)立瞬時(shí)沖量連續(xù)作用下響應(yīng)的總和。應(yīng)用杜哈梅積分,代入初始條件,可得方程全解。
突加荷載,動力系數(shù)為2,短時(shí)突加和瞬時(shí)沖擊(三角形荷載)視作用時(shí)間與自振周期的比值,最大為2
三、 支撐的動力作用
結(jié)構(gòu)物受地震作用,車輛在不平的道路上行駛,或是機(jī)械設(shè)備基礎(chǔ)受臨近設(shè)備的影響均屬這一類問題,其動力作用相當(dāng)于在質(zhì)量上施加一動力荷載。
特點(diǎn):只要體系充分的柔,動力系數(shù)的絕對值將遠(yuǎn)小于1,這樣可使質(zhì)量的振幅遠(yuǎn)小于支座運(yùn)動的振幅。但結(jié)構(gòu)內(nèi)力取決于相對位移,其動力系數(shù)不同于質(zhì)量總位移的動力系數(shù),質(zhì)量的相對位移可能與支座的運(yùn)動位移相反
有阻尼的強(qiáng)迫振動,
方程越來越復(fù)雜,但是道理是差不多的,方程解依然可分為瞬態(tài)部分和穩(wěn)態(tài)部分,工程上主要關(guān)心穩(wěn)態(tài)部分,以下是簡諧荷載作用下有阻尼穩(wěn)態(tài)振動的主要特點(diǎn):
1,阻尼對簡諧荷載下的動力系數(shù)影響較大,特別是θ/ω趨近于1時(shí),動力系數(shù)峰值下降最為明顯;
2,θ/ω=1時(shí),動力系數(shù)=1/(2*ξ),動力系數(shù)最大值發(fā)生在θ/ω稍小于1的位置,最大為1/(2*ξ*sqrt(1-ξ^2))
3,有阻尼時(shí)質(zhì)量的動位移比荷載滯后一個(gè)相位角。θ/ω趨于零,位移荷載趨于同向,此時(shí)體系因振動速度慢,慣性力和阻尼力均不明顯,動力荷載主要由恢復(fù)力平衡,與靜力作用時(shí)相似;θ/ω趨于無窮,位移和荷載趨于反向,動力系數(shù)趨于零,即體系的動位移趨向于零,動力荷載主要由慣性力平衡,體系的動內(nèi)力趨向與零;θ/ω趨向與1,相位差pi/2,在共振區(qū)時(shí)慣性力和恢復(fù)力平衡,而動力荷載和阻尼力平衡。
(二)           多自由度體系
自由振動
方程建立的方法和單自由度時(shí)類似,可以用柔度法和剛度法,這時(shí)的變?yōu)榫性方程組,求其位移非零解,類似特征方程和特征值問題,自振頻率類似特征值,相對應(yīng)的振型類似特征值對應(yīng)的特征向量,而且一組正交解。
體系中質(zhì)體位移模態(tài)保持不變的振動形式稱之為主振型,簡稱振型。體系的自振頻率中最小的頻率稱為第一頻率或基本頻率,其對應(yīng)的振型稱為第一振型或基本振型。自振頻率及其主振型均為體系固有的動力特性,與外界因素?zé)o關(guān)。根據(jù)工程中較低自振頻率的振型對于體系的動力響應(yīng)作用較大的特點(diǎn),全部自振頻率按照從小到大順序排列,稱為頻率譜或頻率向量。
一般靜定結(jié)構(gòu)宜使用柔度法,超靜定結(jié)構(gòu)宜用剛度法。剛度矩陣和柔度矩陣互為逆矩陣,一般其對應(yīng)元素并非簡單的倒數(shù)關(guān)系。
彈性耦合,作用在某一方向上的力會引起其他方向上的位移,或作用在某一方向上的位移會引起其他方向上的力。慣性耦合,某一自由度方向上的速度會引起其他自由度方向上的慣性力。
主振型的正交性,多自由度體系任意兩個(gè)主振型之間存在以質(zhì)量為權(quán)的正交性,稱為第一正交性。任意兩個(gè)主振型以剛度為權(quán)的正交性,稱為第二正交性。在多自由度自由振動時(shí),相應(yīng)于某一主振型的慣性力不會在其他主振型上做功,相應(yīng)于某一主振型的彈性力也不會在其他主振型上做功,這樣相應(yīng)于某一主振型振動的能量就不會轉(zhuǎn)移到其他振型上去。
簡諧荷載作用下的無阻尼強(qiáng)迫振動的穩(wěn)態(tài)振動特點(diǎn):
1,當(dāng)荷載頻率與體系的任一自振頻率相同時(shí),振幅的系數(shù)行列式等于零,此時(shí)動位移振幅為無窮大,即出現(xiàn)共振現(xiàn)象。
2,質(zhì)量的動位移和慣性力,干擾力同時(shí)達(dá)到幅值,因此可以將慣性力和干擾力幅值同時(shí)作用于體系上,按照靜力法計(jì)算體系的內(nèi)力幅值。
振型分解法
振型分解法,是以體系自由振動是的主振型為基底來描述質(zhì)量的動位移,利用主振型關(guān)于質(zhì)量矩陣和剛度矩陣的正交性,所得的運(yùn)動方程將變成n個(gè)獨(dú)立的微分方程。這種可以使微分方程解除偶聯(lián)關(guān)系的坐標(biāo)稱為正則坐標(biāo),它是一種廣義坐標(biāo)。振型分解法也可以稱為振型疊加法或正則坐標(biāo)法。
為了運(yùn)動方程解耦的需要,在實(shí)際計(jì)算中通常假定粘滯阻尼矩陣C為體系的質(zhì)量矩陣M和剛度矩陣K的線性組合,稱為瑞利阻尼,C=aM+Bk,a,b是兩個(gè)待定的常數(shù),一般可根據(jù)實(shí)測資料確定。
解耦后可得到第i個(gè)振型的振動分量有正則坐標(biāo)表示的運(yùn)動方程,共計(jì)n個(gè)。其是由廣義質(zhì)量,廣義剛度,廣義粘滯阻尼系數(shù)和廣義動力荷載組成的常系數(shù)2階微分方程,回到了單自由度時(shí)的解法,只不過未知量變成了第i振型的正則坐標(biāo)值?捎枚殴贩e分來求正則坐標(biāo)ηi(t)的響應(yīng)。粘滯阻尼系數(shù)的兩個(gè)待定常數(shù)a, b,通常可根據(jù)實(shí)驗(yàn)測得的第一振型和第二振型的阻尼比列方程求得,ξ=1/2(a/ω+b*ω)
以上振型分解法實(shí)質(zhì)是將質(zhì)量動位移分解為以正則坐標(biāo)為權(quán)的各主振型的疊加,由于這一方法是基于疊加原理的,因而不適用與求解非線性振動體系。
特點(diǎn):從正則坐標(biāo)的角度分析,較低頻率相應(yīng)的振型對體系動力響應(yīng)的貢獻(xiàn)遠(yuǎn)大于較高頻率相應(yīng)振型的貢獻(xiàn)。而且,在有阻尼存在時(shí),高振型響應(yīng)的衰減速度又要比低振型的響應(yīng)迅速的多。因此,在用振型分解法分析時(shí),通常只需考慮前幾個(gè)振型對動力響應(yīng)的貢獻(xiàn),就可以滿足對實(shí)際工程問題的精度要求。
(三)           無限自由度體系
嚴(yán)格的說,實(shí)際結(jié)構(gòu)都是質(zhì)量連續(xù)分布的變形體,都屬于無限自由度體系。
以等截面桿彎曲振型為例,列出關(guān)于y(x,t)的4次偏微分方程,用變量分離法可解出通解表達(dá)式,代入初始條件,根據(jù)方程行列式為零的非零解條件,可解得自振頻率,對無限自由度體系,特征方程有無限多解,因而可求得無限多個(gè)自振頻率,對應(yīng)無限多個(gè)主振型
近似法求自振頻率
一,瑞利法,瑞利法是建立在能量守恒定律基礎(chǔ)上的,略去阻尼的影響,彈性體在振動過程中的總能量,即應(yīng)變能和動能之和應(yīng)保持不變。
若Y(x)取為體系的某一振型,則可求得該振型對對應(yīng)的自振頻率的精確值。但一般振型函數(shù)Y(x)是未知的,因此需先假設(shè)一個(gè)接近于振型函數(shù)的位移函數(shù)來代替它,這樣求得的自振頻率通常是近似的。所假設(shè)的位移函數(shù)必須滿足位移邊界條件,并盡可能接近振型的實(shí)際情況。通常第一振型所對應(yīng)的形態(tài)較易估計(jì),也較易用簡單的函數(shù)表達(dá),因此瑞利法主要用于求解第一頻率的近似值。
二,瑞利-里茲法,是對上述方法的改進(jìn),可求體系前若干個(gè)自振頻率的近似值。其基本原理由哈密頓原理導(dǎo)出,哈密頓原理可表述為:在一切可能的運(yùn)動中,真實(shí)的運(yùn)動軌跡使(U-T)的時(shí)間積分取駐值。就是說,真實(shí)的運(yùn)動軌跡使應(yīng)變能和動能之差U-T的一階變分的時(shí)間積分等于零。里茲假設(shè)一組滿足位移邊界條件的函數(shù),稱為里茲基函數(shù),ai為待定參數(shù),或稱廣義坐標(biāo)。推得(U-T)對任意ai的偏微分等于零,得到一組以廣義剛度和廣義質(zhì)量為系數(shù)關(guān)于待定參數(shù)的線性方程組。然后,根據(jù)系數(shù)行列式等于零的條件,可求得體系前n個(gè)自振頻率。一般來說,求體系前n個(gè)自由度時(shí),應(yīng)取n+1個(gè)自由度來計(jì)算。
有限單元法求自振頻率
對于比較復(fù)雜的結(jié)構(gòu),要準(zhǔn)確的假設(shè)其整體位移函數(shù)是難以做到的。此時(shí),可以將結(jié)構(gòu)分割成有限單元,在單元內(nèi)部可采用統(tǒng)一的,相對比較簡單的位移函數(shù),而將結(jié)構(gòu)作為這些單元的集合來分析,這種分析方法稱為有限單元法。
假設(shè)單元軸線上任意點(diǎn)的軸向位移u是x的線性函數(shù),而橫向位移v是x的三次函數(shù),根據(jù)單元兩端結(jié)點(diǎn)位移有位移函數(shù)w=[u;v]T=NΔ ,用形函數(shù)矩陣和端點(diǎn)位移的乘積來表示任意點(diǎn)的位移,由此可得應(yīng)變和應(yīng)力表達(dá)式(應(yīng)變?yōu)槔炀應(yīng)變和彎曲線應(yīng)變,應(yīng)力對應(yīng)為拉壓和彎曲引起的截面正應(yīng)力)。由虛功原理單元桿端力虛功等于單元中應(yīng)力在虛應(yīng)變中所作虛功,最后可推出單元?jiǎng)偠染仃嚨谋磉_(dá)式,與直接利用靜力學(xué)方法導(dǎo)得的公式完全相同。(后面求穩(wěn)定性時(shí)貼了一個(gè)幾何剛度矩陣的補(bǔ)丁,說是考慮軸向力對剛度的影響,不解)
如果將鋼架單元在振動過程中受到的分布慣性力作為一種隨時(shí)間變化的分布荷載看待,則可得到有分布質(zhì)量的慣性力所引起的等效結(jié)點(diǎn)力,根據(jù)結(jié)點(diǎn)平衡條件,慣性力所引起的桿端力應(yīng)是上述等效結(jié)點(diǎn)力的負(fù)值,從而可得一致質(zhì)量矩陣。單元一致質(zhì)量矩陣式對稱矩陣,它的某一列元素代表了某結(jié)點(diǎn)位移加速度等于1時(shí)所引起的各單元桿端力。
根據(jù)單元?jiǎng)偠染仃嚭蛦卧恢沦|(zhì)量矩陣,可得到結(jié)果剛度矩陣K和質(zhì)量矩陣M,然后根據(jù)頻率方程|K-ω2M|=0,求得體系的自振頻率。
一般地,有限單元法求得的自振頻率比精確值偏高,而用集中質(zhì)量法近似計(jì)算時(shí)得到的頻率有降低的趨向。在板殼振動問題中,上述趨向常能與因采用有限單元位移法使結(jié)構(gòu)鋼化以至計(jì)算頻率增高的趨向起相互抵消的作用。
結(jié)構(gòu)的彈性穩(wěn)定
結(jié)構(gòu)的承載力除了取決于它的強(qiáng)度之外,還取決于他的穩(wěn)定性。當(dāng)結(jié)構(gòu)中的某些構(gòu)件受到較大壓應(yīng)力作用時(shí),結(jié)構(gòu)可能在材料抗力為得到充分發(fā)揮之前就因變形的迅速發(fā)展而喪失承載能力,這種現(xiàn)象即稱為失穩(wěn)破壞,其相應(yīng)的荷載稱為結(jié)構(gòu)的臨界荷載。
結(jié)構(gòu)的失穩(wěn)主要有兩種類型。第一類失穩(wěn)的基本特征是結(jié)構(gòu)的平衡路徑發(fā)生分支,所以也稱為分支點(diǎn)失穩(wěn)。第二類失穩(wěn)的基本特征是結(jié)構(gòu)因荷載的作用而引起的變形的增長使得結(jié)構(gòu)內(nèi)、外力增量之間的平衡失去可能。在極值點(diǎn)處,結(jié)構(gòu)由穩(wěn)定平衡轉(zhuǎn)變?yōu)椴环(wěn)定平衡,因此第二類失穩(wěn)也稱為極值點(diǎn)失穩(wěn)。比如具有初彎曲或橫向荷載的壓桿,特點(diǎn)是:從加載到失穩(wěn)的過程中結(jié)構(gòu)變形的性質(zhì)不發(fā)生突變,而是平衡路徑產(chǎn)生了極值點(diǎn)。對于扁平的拱式結(jié)構(gòu),還可能發(fā)生跳躍失穩(wěn)現(xiàn)象。除了上述整體失穩(wěn)之外,對于薄壁構(gòu)件還可能發(fā)生局部失穩(wěn)。比如工形鋼梁,在一定的荷載作用下翼緣和腹板均可能發(fā)生局部鼓曲,稱為局部失穩(wěn)或局部屈曲。當(dāng)薄壁板件受到的邊界約束較強(qiáng)時(shí),也可能出現(xiàn)板件局部屈曲之后仍可繼續(xù)承受更大荷載的情況,稱為超屈曲強(qiáng)度或屈曲后強(qiáng)度。實(shí)際結(jié)構(gòu)嚴(yán)格地說都屬于第二類失穩(wěn),第二類失穩(wěn)屬于幾何非線性問題,而且當(dāng)結(jié)構(gòu)的變形增加到一定程度時(shí)通常還伴有材料非線性的出現(xiàn),計(jì)算比較復(fù)雜,一般只能利用計(jì)算機(jī)通過數(shù)值分析的方法確定臨界荷載。
在作穩(wěn)定性分析時(shí),將確定體系失穩(wěn)時(shí)的位移形態(tài)所需的獨(dú)立幾何參數(shù)的數(shù)目稱為體系失穩(wěn)的自由度。一般彈性壓桿或結(jié)構(gòu)的失穩(wěn)都屬于無限自由度的,因?yàn)槭軌菏Х(wěn)桿件的形狀通常不能像一般受彎桿件那樣用若干個(gè)獨(dú)立幾何參數(shù)加以表達(dá)。若受壓失穩(wěn)桿件的彎曲剛度被視作無窮大,則無限自由度的穩(wěn)定問題便轉(zhuǎn)化為有限自由度。
靜力法,就是在原始平衡狀態(tài)附近的新的位移形態(tài)上建立靜力平衡方程,并以新位移形態(tài)取得非零解的條件確定失穩(wěn)的臨界荷載。
特點(diǎn),1, 具有n個(gè)自由度的體系失穩(wěn)時(shí)共有n個(gè)特征值,其對應(yīng)有n個(gè)特征向量,即有n個(gè)可能發(fā)生的失穩(wěn)位移形態(tài)。2,對稱結(jié)構(gòu)在對稱荷載作用下的失穩(wěn)位移形態(tài)是對稱或反對稱的。3, 真實(shí)的臨界荷載對應(yīng)n個(gè)特征值中的最小者。
能量法,按照勢能駐值原理,體系取得平衡的充要條件是,任意可能的位移和變形均使勢能Ep取得駐值,δEp=0 即勢能的一階變分等于零。對于具有n個(gè)自由度的體系,若總勢能可以表達(dá)為廣義坐標(biāo)a1,…an的函數(shù),則勢能的駐值條件,要求對任意δai,Ep對ai的偏導(dǎo)等于零,這樣就得到一組其次線性代數(shù)方程,其取得非零解的充要條件是系數(shù)行列式等于零,稱為體系的穩(wěn)定方程或特征方程。由穩(wěn)定方程n個(gè)根中的最小者即可確定臨界荷載。
(一)         用能量法確定彈性壓桿的臨界荷載
用靜力法確定彈性壓桿的臨界荷載時(shí),若桿件的截面或軸向荷載的變化情況比較復(fù)雜,則可能導(dǎo)致?lián)锨⒎址匠谭Q為變系數(shù)的,常很難積分為有限形式;若是穩(wěn)定方程的階數(shù)過高,不易展開求解。此時(shí)應(yīng)用能量法常能取得很好的效果。
假設(shè)壓桿失穩(wěn)是的位移函數(shù),列出勢能表達(dá)式,根據(jù)勢能駐值條件可得一組齊次線性代數(shù)方程,此法也稱里茲法。由于壓桿失穩(wěn)時(shí)的位移曲線一般很難精確預(yù)計(jì)和表達(dá),用能量法通常只能求得臨界荷載的近似值,而其近視程度完全取決于所假設(shè)的位移曲線與真實(shí)的失穩(wěn)位移曲線的符合程度。當(dāng)位移函數(shù)為較簡單的近似曲線時(shí),其二階導(dǎo)數(shù)的誤差一般遠(yuǎn)大與位移本身的誤差,此時(shí)若能將桿件截面彎矩M用y表達(dá)后直接計(jì)算彎曲應(yīng)變能,則所求臨界荷載的精度通常會明顯提高。由于同樣的原因,在連續(xù)體有限單元位移法中,位移的計(jì)算精度一般要高于有位移求導(dǎo)后得到的應(yīng)力的計(jì)算精度。
(二)         組合壓桿的穩(wěn)定
所謂組合壓桿是由作為承受荷載的主要部件的肢桿和維系肢桿形成整體,以保證肢桿共同工作的綴合桿所構(gòu)成的。通常有綴條式和綴板式,組合壓桿穩(wěn)定性分析關(guān)鍵在于確定整體剪切變形對其失穩(wěn)臨界荷載的影響。根據(jù)靜力法依前所述建立失穩(wěn)平衡微分方程,代入邊界條件求得穩(wěn)定方程最小正根,即可求得Fpcr=Fpe/(1+Fpe*k/(G*A)),其中Fpe=pi^2*E*I/l*2為簡支實(shí)腹壓桿的歐拉臨界荷載,k/(G*A)為單位剪力所引起桿軸的平均剪切角γ0(k剪應(yīng)力截面分布不均系數(shù),矩形1.2,圓10/9,工字A/A1腹板面積)
綴條式和綴板式組合壓桿的計(jì)算依據(jù)上述可分別推得,經(jīng)過適當(dāng)?shù)暮喕徒,在鋼結(jié)構(gòu)設(shè)計(jì)規(guī)范中有相關(guān)介紹。
(三)         鋼架的穩(wěn)定
鋼架在豎向荷載作用下的失穩(wěn)通常屬于喪失第二類穩(wěn)定性的問題。鋼架的側(cè)移隨荷載的增加而增大,而且因柱中的軸力會在側(cè)移上引起附加彎矩,側(cè)移增大的速度會不斷的加快。當(dāng)荷載達(dá)到臨界值時(shí),平衡路徑將出現(xiàn)極大值點(diǎn),鋼架的平衡隨即喪失穩(wěn)定性。由于第二類穩(wěn)定性的問題比較復(fù)雜,因此常把問題近似地轉(zhuǎn)化為喪失第一類穩(wěn)定性的問題。
在作鋼架的內(nèi)力分析時(shí),若桿件所受的軸向力很大(與臨界荷載相比),則軸向力對桿件剛度的影響就往往不能忽略。這種考慮軸向力對剛度影響(即二階效應(yīng))的結(jié)構(gòu)分析稱為二階分析。例如,對于超高層建筑和構(gòu)筑物來說,這種二階效應(yīng)常不容忽略。
鋼架穩(wěn)定性分析的位移法
根據(jù)平衡條件列微分方程,考慮軸力對彎矩的影響,求得通解根據(jù)邊界條件解出桿端彎矩和剪力,與位移法方程不同的是各項(xiàng)系數(shù)加入了計(jì)及軸力影響的剛度修正系數(shù)。桿件的內(nèi)力并不是軸向力的線性函數(shù),而且因軸向力會產(chǎn)生附加彎矩,桿件的彎矩圖形不再是直線。但桿端力仍然是桿端位移的線性函數(shù),因此對于桿端位移來說仍然可適用疊加原理。在用位移法分析鋼架第一類穩(wěn)定性時(shí),作用于結(jié)點(diǎn)上的荷載不會使基本結(jié)構(gòu)中的附加剛臂和附加鏈桿產(chǎn)生約束反力(忽略軸向變形?),因此位移法典型方程中的各自由項(xiàng)(載常數(shù))都等于零。當(dāng)鋼架失穩(wěn)時(shí),位移法方程的系數(shù)行列式等于零,由此解得臨界荷載。
鋼架穩(wěn)定性分析的有限單元法
在作鋼架穩(wěn)定性分析時(shí),為計(jì)及軸向力對單元?jiǎng)偠鹊挠绊,把剛度矩陣增加一?xiàng)稱為單元幾何剛度矩陣,或稱單元初應(yīng)力矩陣,它與單元軸向力的水平有關(guān)。
由位移法所得的穩(wěn)定方程行列式的階數(shù)較高,并且屬于超越方程,一般很難手算求解,也不易對其求解過程編制通用的計(jì)算機(jī)程序。而所謂的有限單元法就是利用統(tǒng)一而又比較簡單的近似位移函數(shù)來描述各單元的變形,然后利用虛功原理或能量原理導(dǎo)出單元桿端力與桿端位移之間的關(guān)系。對于桿件單元,一般可采用三次拋物線方程作為撓曲位移函數(shù),當(dāng)桿件不受軸向力作用時(shí)是精確的,但是在考慮軸向力作用時(shí),采用上述位移函數(shù)卻是近似的,由此導(dǎo)得的單元幾何剛度矩陣也將是近似的。若需改善計(jì)算精度,可以將鋼架中的受壓桿劃分為若干個(gè)單元。
分析單元軸向力在由于橫向虛位移引起的虛變形上所作的虛功,可推得單元幾何剛度矩陣,其是對稱矩陣各項(xiàng)元素的值與單元軸向力成正比,其可用于鋼架內(nèi)力的二階分析,以及與單元大位移矩陣相結(jié)合用于鋼架的大位移分析;忽略軸向變形時(shí)的梁式單元的幾何剛度矩陣,適用于分支穩(wěn)定性問題的分析;
最后值得指出的是,用有限單元法求得的鋼架失穩(wěn)的臨界荷載將高于臨界荷載的精確值。因?yàn)榧俣藛卧奈灰坪瘮?shù)相當(dāng)于增加了無形的約束,從而增加了結(jié)構(gòu)的剛度。
(四)         拱和窄梁的穩(wěn)定
對圓環(huán),其臨界荷載qcr=3EI/R^3 ,說明圓環(huán)失穩(wěn)的臨界荷載與其半徑的立方成反比,可見其穩(wěn)定性隨半徑的增大而迅速降低。
對拱根據(jù)不同的邊界條件有不同的臨界荷載,詳見教材P195。
窄梁的穩(wěn)定
為了增大梁在平面內(nèi)的抗彎能力,經(jīng)常把梁的截面設(shè)計(jì)成高而窄的形式。當(dāng)橫向荷載達(dá)到一定數(shù)值時(shí),這種這種窄梁在原平面內(nèi)的彎曲狀態(tài)可能稱為不穩(wěn)定的,而發(fā)生平面外的斜彎曲和扭轉(zhuǎn)變形,稱為彎扭失穩(wěn)。
臨界荷載Mcr=πEIy/l*sqrt(GIp/EIy),可看出,當(dāng)梁的軸向位移可以忽略時(shí),臨界荷載與梁的側(cè)向彎曲剛度以及扭轉(zhuǎn)剛度的平方根成正比,而與梁在自身平面內(nèi)的彎曲剛度無關(guān)。
結(jié)構(gòu)的塑性分析和極限荷載
  材料的理想彈塑性假設(shè),假設(shè)材料的受拉和受壓性能相同,在彈性階段應(yīng)力與應(yīng)變?yōu)榫性關(guān)系。應(yīng)力一旦到達(dá)屈服極限,材料便進(jìn)入塑性流動的狀態(tài),此時(shí)即使應(yīng)力不再增加,應(yīng)變也可以無限增加。卸載過程中,應(yīng)變的彈性部分隨應(yīng)力減至零而消失,而塑性部分卻不隨卸載而消失,稱為殘余應(yīng)變。即使說材料在加載時(shí)為理想彈塑性的,而卸載時(shí)卻是線彈性的。彈塑性問題的分析結(jié)果與加載路徑有關(guān),計(jì)算時(shí)需要追蹤結(jié)構(gòu)的全部受力變形過程。
對矩形截面α=Mu/Ms ,α截面形狀系數(shù)。(矩形1.5,圓形16/(3*pi)=1.7,工字型1.10-1.17,圓環(huán)1.27-1.40)
塑性鉸與普通鉸的相同之處是較兩側(cè)的截面可以產(chǎn)生有限的相對轉(zhuǎn)角。區(qū)別:1, 普通鉸不能承受彎矩作用,而塑性鉸兩側(cè)必有大小等于極限彎矩Mu的彎矩作用;2,普通鉸是雙向鉸,而塑性鉸是單向鉸,只能沿著彎矩增大的方向自由產(chǎn)生相對轉(zhuǎn)角,若發(fā)生反向的轉(zhuǎn)角,則塑性鉸處將恢復(fù)剛性聯(lián)結(jié)的特性
在彈塑性階段中性軸的位置隨彎矩而變化,可根據(jù)平衡關(guān)系確定中性軸位置和彈性核的高度。
在塑性流動階段,中性軸變成面積等分軸,Mu=Wu*σs ,Wu=S1+S2,塑性彎曲截面模量,S1和S2分別為面積A1和A2對中性軸的靜矩。
超靜定結(jié)構(gòu)在整個(gè)受力直至破壞的過程中內(nèi)力的分布圖形經(jīng)歷了變化過程,這個(gè)過程稱為超靜定結(jié)構(gòu)內(nèi)力的塑性重分布。
超靜定結(jié)構(gòu)極限荷載計(jì)算的特點(diǎn):
1,只需預(yù)先判定超靜定結(jié)構(gòu)的破壞結(jié)構(gòu),就可根據(jù)該破壞機(jī)構(gòu)在極限狀態(tài)的平衡條件確定極限荷載,而無需考慮彈塑性變形的發(fā)展過程、塑性鉸形成的順序和變形協(xié)調(diào)條件。
2,溫度變化、支座移動等因素對超靜定結(jié)構(gòu)的極限荷載沒有影響,以為超靜定結(jié)構(gòu)的最后一個(gè)塑性鉸形成之前,已經(jīng)變?yōu)殪o定結(jié)構(gòu),所以溫度變化、支座移動等因素對最后的內(nèi)力狀態(tài)沒有影響。
結(jié)構(gòu)的極限荷載實(shí)際上只與最后的破壞形式有關(guān),只要能找出真實(shí)的破壞機(jī)構(gòu),便可據(jù)此直接求得極限荷載。所謂比例加載是指所有荷載都保持固定的比例,整個(gè)荷載可用一個(gè)荷載參數(shù)Fp來表示,即所有荷載組成一個(gè)廣義力,而且荷載參數(shù)只單調(diào)增加,不出現(xiàn)卸載現(xiàn)象。
結(jié)構(gòu)處于極限狀態(tài)時(shí)必須同時(shí)滿足以下三個(gè)條件:
1, 平衡條件:結(jié)構(gòu)的整體或任一局部都能維持平衡;
2,內(nèi)力局限條件:在極限狀態(tài)下,結(jié)構(gòu)任一截面的內(nèi)力都不超過其極限值;
3,單向機(jī)構(gòu)條件:在極限狀態(tài)下,結(jié)構(gòu)已有足夠數(shù)量的截面的內(nèi)力達(dá)到極限值而使結(jié)構(gòu)轉(zhuǎn)化為機(jī)構(gòu),能夠沿著荷載作正功的方向作單向運(yùn)動。
為便于討論,將滿足1,3的荷載稱為可破壞荷載FP+,而滿足1,2的荷載稱為可接受荷載FP-。則可知極限荷載即是可破壞荷載又是可接受荷載。
基本定理:可破壞荷載恒不小于可接受荷載,F(xiàn)P+≥FP-
1,極小定理(上限定理),可破壞荷載中的最小值極為極限荷載
2,極大定理(下限定理),可接受荷載中的最大值即為極限荷載
3,唯一性定理(單值定理),極限荷載值是唯一確定的。
應(yīng)當(dāng)指出,結(jié)構(gòu)在同一廣義力作用下,其極限狀態(tài)可能不止一種,但每一種極限狀態(tài)相應(yīng)的極限荷載彼此相等,換而言之,極限荷載值是唯一的,而極限狀態(tài)則不一定是唯一的。
上限定理和下限定理可以用于給出極限荷載的上下限,也可以用于求極限荷載的精確解。根據(jù)上限定理來確定極限荷載的方法可稱為群舉法。如果能完備地列出結(jié)構(gòu)所有可能的破壞機(jī)構(gòu),從相應(yīng)的各可破壞荷載中取出最小值即為極限荷載。
平面鋼架的極限荷載
以矩形截面為例,截面屈服時(shí),軸力和彎矩的關(guān)系是一條二次拋物線,稱為屈服軌線。軸力較小時(shí),其對截面極限彎矩的影響不很明顯,因此在計(jì)算時(shí)一般可以忽略軸力對于極限彎矩的影響。
對于比較復(fù)雜的鋼架,由于破壞機(jī)構(gòu)的可能形式很多,采用傳統(tǒng)方法確定極限荷載變得十分困難,于是出現(xiàn)了用計(jì)算機(jī)求解極限荷載的增量變剛度法。增量變剛度法的基本思路是將結(jié)構(gòu)的塑性分析的非線性問題轉(zhuǎn)化為階段化的線性問題求解。基本假設(shè):
1,結(jié)構(gòu)的材料是理想彈塑性的,而且結(jié)構(gòu)在到達(dá)極限狀態(tài)之前變形是微小的。
2,在截面成為塑性鉸之前,其行為特征保持為彈性;出現(xiàn)塑性鉸之后,將塑性區(qū)退化為塑性鉸所在截面,桿件其余部分仍為彈性區(qū)。
3,為簡化計(jì)算,假設(shè)荷載按比例增加,且為結(jié)點(diǎn)荷載,因而塑性鉸只出現(xiàn)在結(jié)點(diǎn)處,塑性鉸處的彎矩不發(fā)生卸載現(xiàn)象;每一桿件的極限彎矩為常數(shù),但各桿的極限彎矩可以不相同,忽略剪力和軸力對極限彎矩的影響。
增量變剛度法的應(yīng)用時(shí)建立在矩陣位移法的基礎(chǔ)之上的,主要特點(diǎn)是采用分級加載,在每一級加載段內(nèi)均按彈性分析,而以新塑性鉸的出現(xiàn)作為分界標(biāo)志。每當(dāng)出現(xiàn)新的塑性鉸,就需要修改相關(guān)單元的剛度矩陣,并需要調(diào)整結(jié)構(gòu)剛度矩陣,這也就是增量變剛度法名稱的由來。以上過程一直進(jìn)行到出現(xiàn)下列情況之一則結(jié)構(gòu)將形成破壞結(jié)構(gòu):
1,結(jié)構(gòu)剛度矩陣變?yōu)槠娈悾?/div>
2,結(jié)構(gòu)剛度矩陣的主對角元素中出現(xiàn)零元素。
此時(shí),結(jié)構(gòu)就到達(dá)了極限狀態(tài),將結(jié)構(gòu)到達(dá)極限狀態(tài)之前的各級荷載增量相加,即得結(jié)構(gòu)的極限荷載,相應(yīng)的內(nèi)力和位移也同樣可由累加的方法求得。實(shí)際計(jì)算中,當(dāng)結(jié)構(gòu)剛度矩陣系數(shù)行列式或其主對角元素的值充分小,或者相應(yīng)的結(jié)點(diǎn)位移超出正常范圍時(shí)即可停止計(jì)算。

& p0 W- Z5 _9 W; h2 I* ?) z" N
以上主要內(nèi)容摘自《結(jié)構(gòu)力學(xué)》下冊,朱慈勉主編

, z4 B$ }9 F& ~+ E6 y. R
回復(fù)

使用道具 舉報(bào)

2#
發(fā)表于 2016-5-13 23:45:01 | 只看該作者
樓主簡直是神。!
3#
發(fā)表于 2016-5-16 14:36:37 | 只看該作者
佩服樓主
; j/ |* c! b0 R: `樓主能否用虛功原理解算個(gè)工程問題讓大家飽飽眼福呢
4#
發(fā)表于 2016-5-17 22:24:15 | 只看該作者
樓上還虛功,要不再來個(gè)達(dá)朗貝爾
5#
發(fā)表于 2016-5-18 21:17:15 | 只看該作者
本來以為是資料可以下載哈
您需要登錄后才可以回帖 登錄 | 注冊會員

本版積分規(guī)則

小黑屋|手機(jī)版|Archiver|機(jī)械社區(qū) ( 京ICP備10217105號-1,京ICP證050210號,浙公網(wǎng)安備33038202004372號 )

GMT+8, 2024-11-9 06:08 , Processed in 0.058924 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回復(fù) 返回頂部 返回列表