|
624272884 發(fā)表于 2015-5-8 17:17
算過的例子我這里有幾個(gè),我以前也發(fā)過幾個(gè),不過回應(yīng)的人確實(shí)不多,可能我的案例太弱智了
>> syms t q a k A R2
>> x=R2*t*sin(t)+a
x =
a + R2*t*sin(t)
>> y=R2*t*cos(t)
y =
R2*t*cos(t)
>> x1=-x*cos(k*q)-y*sin(k*q)+A*cos(q)
x1 =
A*cos(q) - cos(k*q)*(a + R2*t*sin(t)) - R2*t*sin(k*q)*cos(t)
>> y1=-x*sin(k*q)+y*cos(k*q)+A*sin(q)
y1 =
A*sin(q) - sin(k*q)*(a + R2*t*sin(t)) + R2*t*cos(k*q)*cos(t)
>> diff(x1,t)
ans =
R2*t*sin(k*q)*sin(t) - R2*sin(k*q)*cos(t) - cos(k*q)*(R2*sin(t) + R2*t*cos(t))
>> diff(x1,q)
ans =
k*sin(k*q)*(a + R2*t*sin(t)) - A*sin(q) - R2*k*t*cos(k*q)*cos(t)
>> diff(y1,t)
ans =
R2*cos(k*q)*cos(t) - sin(k*q)*(R2*sin(t) + R2*t*cos(t)) - R2*t*cos(k*q)*sin(t)
>> diff(y1,q)
ans =
A*cos(q) - k*cos(k*q)*(a + R2*t*sin(t)) - R2*k*t*sin(k*q)*cos(t)
>> f1=sym('(A*cos(q) - k*cos(k*q)*(a + R2*t*sin(t)) - R2*k*t*sin(k*q)*cos(t))*(R2*t*sin(k*q)*sin(t) - R2*sin(k*q)*cos(t) - cos(k*q)*(R2*sin(t) + R2*t*cos(t)))-(k*sin(k*q)*(a + R2*t*sin(t)) - A*sin(q) - R2*k*t*cos(k*q)*cos(t))*(R2*cos(k*q)*cos(t) - sin(k*q)*(R2*sin(t) + R2*t*cos(t)) - R2*t*cos(k*q)*sin(t))')
f1 =
(k*cos(k*q)*(a + R2*t*sin(t)) - A*cos(q) + R2*k*t*sin(k*q)*cos(t))*(cos(k*q)*(R2*sin(t) + R2*t*cos(t)) + R2*sin(k*q)*cos(t) - R2*t*sin(k*q)*sin(t)) - (A*sin(q) - k*sin(k*q)*(a + R2*t*sin(t)) + R2*k*t*cos(k*q)*cos(t))*(sin(k*q)*(R2*sin(t) + R2*t*cos(t)) - R2*cos(k*q)*cos(t) + R2*t*cos(k*q)*sin(t))
>> simplify(f1)
ans =
A*R2*sin(q - t - k*q) + R2^2*k*t + R2*a*k*sin(t) - A*R2*t*cos(q - t - k*q) + R2*a*k*t*cos(t)
令 A*R2*sin(q - t - k*q) + R2^2*k*t + R2*a*k*sin(t) - A*R2*t*cos(q - t - k*q) + R2*a*k*t*cos(t)=0
則q的表達(dá)式可手算出來
|
|